O'Reilly logo

Getting Started with MakerBot by Jay Shergill, Anna Kaziunas France, Bre Pettis

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Chapter 1. Introduction

In which the reader shall learn about the implications and responsibilities that come with being the Operator and Caretaker for a MakerBot and shall be introduced to robots of great power and promise.

How Does a MakerBot Work?

All MakerBot prints start with a digital design—a 3D model of your object. Software takes that model and slices it up into layers a fraction of a millimeter thick. When it’s time to print, a MakerBot works by laying down layers of plastic. Each layer is precisely drawn by the machine using molten plastic. It cools immediately, and in the process of cooling down transforms from a molten liquid into a solid model! Figure 1-1 shows the original MakerBot Replicator.

MakerBots print in thermoplastics—either ABS (the same stuff Legos are made of) or PLA (a biodegradable substance made from starchy foodstuffs). A thermoplastic is a material that softens and becomes pliable above a certain temperature and then returns to its solid form as it cools. The thermoplastic printing material—also called filament—starts out on a reel like spaghetti or very thick fishing line. When you’re printing, a very precise motor drives that raw filament through an extruder, a very tiny nozzle that gets hot enough to melt it. What comes out the other end is molten plastic that looks like super fine angel hair spaghetti, which quickly cools and turns into whatever it is you’re printing.

As it prints, the MakerBot draws a “picture” in two dimensions with this small bead of plastic. When it’s done drawing each two-dimensional layer, it moves up a fraction of a millimeter and draws another picture right on top of the first one. Just like that, your object gets built, one layer of plastic at a time, until it gets presented to you as a solid finished object.

Diagram of a MakerBot

Figure 1-1. Diagram of a MakerBot

The MakerBot Cupcake CNC, Thing-O-Matic, and Replicator Series

MakerBot Industries has just announced its fourth generation desktop 3D printer, the MakerBot Replicator 2. This printer is a PLA-only printer and can make things that are 11.2 x 6 x 6.1 inches in size. That’s big enough to make a good sized shoe!

MakerBot launched their company with the Cupcake CNC in 2009 which made things that were about 4x4x4 inches and then in 2010 they launched the MakerBot Thing-O-Matic which could make things approximately 5x5x5 inches. In 2012, the MakerBot Replicator was released with the option of having two nozzles so you can make things in two colors. It can make things that are about 6x6x9 inches or roughly the size of a loaf of bread.

What Can a MakerBot Make?

With a MakerBot, you can make anything. While there is a limitation on the size of things that you can make, if you want to make something bigger than the build volume, you can make it in multiple parts and glue them together.

I find there to be a number of parallels between using a MakerBot desktop 3D printer and one of my other hobbies, origami. A few years ago, Robert Lang, an engineer and modern origami designer, presented a complete algorithm that solves for an origami base that can have any number of desired flaps of any length, that could be then folded into anything from a single square of paper. In essence, Mr. Lang’s research has demonstrated that a sophisticated origami folder could fold absolutely anything from just one single sufficiently large square of paper.

A MakerBot provides an operator with an extra dimension beyond a simple two-dimensional sheet of paper, while removing the skill requirement from the equation. You can make a complicated plastic structure with a MakerBot just as quickly and easily as you can a solid cube—using the same volume of plastic.

It stands to reason that if anything is possible in a single sheet of square paper, at least that much is possible with a machine that can build things in three dimensions.


With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required