Chapter 2: Variational Autoencoder

In the previous chapter, we looked at how a computer sees an image as pixels, and we devised a probabilistic model for pixel distribution for image generation. However, this is not the most efficient way to generate an image. Instead of scanning an image pixel by pixel, we first look at the image and try to understand what is inside. For example, a girl is sitting, wearing a hat, and smiling. Then we use that information to draw a portrait. This is how autoencoders work.

In this chapter, we will first learn how to use an autoencoder to encode pixels into latent variables that we can sample from to generate images. Then we will learn how to tweak it to create a more powerful model known as a variational autoencoder ...

Get Hands-On Image Generation with TensorFlow now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.