Skip to Content
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition
book

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition

by Aurélien Géron
September 2019
Intermediate to advanced content levelIntermediate to advanced
848 pages
24h 18m
English
O'Reilly Media, Inc.
Content preview from Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition

Chapter 10. Introduction to Artificial Neural Networks with Keras

Birds inspired us to fly, burdock plants inspired Velcro, and nature has inspired countless more inventions. It seems only logical, then, to look at the brain’s architecture for inspiration on how to build an intelligent machine. This is the logic that sparked artificial neural networks (ANNs): an ANN is a Machine Learning model inspired by the networks of biological neurons found in our brains. However, although planes were inspired by birds, they don’t have to flap their wings. Similarly, ANNs have gradually become quite different from their biological cousins. Some researchers even argue that we should drop the biological analogy altogether (e.g., by saying “units” rather than “neurons”), lest we restrict our creativity to biologically plausible systems.1

ANNs are at the very core of Deep Learning. They are versatile, powerful, and scalable, making them ideal to tackle large and highly complex Machine Learning tasks such as classifying billions of images (e.g., Google Images), powering speech recognition services (e.g., Apple’s Siri), recommending the best videos to watch to hundreds of millions of users every day (e.g., YouTube), or learning to beat the world champion at the game of Go (DeepMind’s AlphaGo).

The first part of this chapter introduces artificial neural networks, starting with a quick tour of the very first ANN architectures and leading up to Multilayer Perceptrons (MLPs), which are heavily used ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition

Aurélien Géron
Machine Learning with PyTorch and Scikit-Learn

Machine Learning with PyTorch and Scikit-Learn

Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili

Publisher Resources

ISBN: 9781492032632Errata Page