July 2020
Intermediate to advanced
384 pages
8h 38m
English
In the previous chapter, we dealt with clean data, where all the values were available to us, all the columns had numeric values, and when faced with too many features, we had a regularization technique on our side. In real life, it will often be the case that the data is not as clean as you would like it to be. Sometimes, even clean data can still be preprocessed in ways to make things easier for our machine learning algorithm. In this chapter, we will learn about the following data preprocessing techniques: