October 2023
Intermediate to advanced
606 pages
16h 37m
English
In this chapter, we will discuss the traditional methods used for machine learning interpretation for both regression and classification. This includes model performance evaluation methods such as RMSE, R-squared, AUC, ROC curves, and the many metrics derived from confusion matrices. We will then examine the limitations of these performance metrics and explain what exactly makes “white-box” models intrinsically interpretable and why we cannot always use white-box models. To answer these questions, we’ll consider the trade-off between prediction performance and model interpretability. Finally, we will discover some new “glass-box” models such as Explainable Boosting Machines (EBMs) and GAMI-Net that attempt to not ...