O'Reilly logo

Learning Bayesian Models with R by Dr. Hari M. Koduvely

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Topic modeling using Bayesian inference

We have seen the supervised learning (classification) of text documents in Chapter 6, Bayesian Classification Models, using the Naïve Bayes model. Often, a large text document, such as a news article or a short story, can contain different topics as subsections. It is useful to model such intra-document statistical correlations for the purpose of classification, summarization, compression, and so on. The Gaussian mixture model learned in the previous section is more applicable for numerical data, such as images, and not for documents. This is because words in documents seldom follow normal distribution. A more appropriate choice would be multinomial distribution.

A powerful extension of mixture models to ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required