O'Reilly logo

Learning Bayesian Models with R by Dr. Hari M. Koduvely

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Chapter 6. Bayesian Classification Models

We introduced the classification machine learning task in Chapter 4, Machine Learning Using Bayesian Inference, and said that the objective of classification is to assign a data record into one of the predetermined classes. Classification is one of the most studied machine learning tasks and there are several well-established state of the art methods for it. These include logistic regression models, support vector machines, random forest models, and neural network models. With sufficient labeled training data, these models can achieve accuracies above 95% in many practical problems.

Then, the obvious question is, why would you need to use Bayesian methods for classification? There are two answers to this ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required