Skip to Main Content
Learning OpenCV
book

Learning OpenCV

by Gary Bradski, Adrian Kaehler
September 2008
Beginner to intermediate content levelBeginner to intermediate
580 pages
20h 7m
English
O'Reilly Media, Inc.
Content preview from Learning OpenCV

IplImage Data Structure

With all of that in hand, it is now easy to discuss the IplImage data structure. In essence this object is a CvMat but with some extra goodies buried in it to make the matrix interpretable as an image. This structure was originally defined as part of Intel's Image Processing Library (IPL).[19] The exact definition of the IplImage structure is shown in Example 3-10.

Example 3-10. IplImage header structure

typedef struct _IplImage {
  int                  nSize;
  int                  ID;
  int                  nChannels;
  int                  alphaChannel;
  int                  depth;
  char                 colorModel[4];
  char                 channelSeq[4];
  int                  dataOrder;
  int                  origin;
  int                  align;
  int                  width;
  int                  height;
  struct _IplROI*      roi;
  struct _IplImage*    maskROI;
  void*                imageId;
  struct _IplTileInfo* tileInfo;
  int                  imageSize;
  char*                imageData;
  int                  widthStep;
  int                  BorderMode[4];
  int                  BorderConst[4];
  char*                imageDataOrigin;
} IplImage;

As crazy as it sounds, we want to discuss the function of several of these variables. Some are trivial, but many are very important to understanding how OpenCV interprets and works with images.

After the ubiquitous width and height, depth and nChannels are the next most crucial. The depth variable takes one of a set of values defined in ipl.h, which are (unfortunately) not exactly the values we encountered when looking at matrices. This is because for images we tend to deal with the depth and the number of channels separately (whereas in the matrix routines we tended to refer to them simultaneously). The possible depths are listed in Table 3-2.

Table 3-2. OpenCV ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Learning OpenCV 3

Learning OpenCV 3

Adrian Kaehler, Gary Bradski
Learning OpenCV, 2nd Edition

Learning OpenCV, 2nd Edition

Adrian Kaehler, Gary Bradski
Practical OpenCV

Practical OpenCV

Samarth Brahmbhatt
Machine Learning for OpenCV

Machine Learning for OpenCV

Michael Beyeler, Michael Beyeler (USD)

Publisher Resources

ISBN: 9780596516130Supplemental ContentErrata Page