Skip to Main Content
Learning OpenCV
book

Learning OpenCV

by Gary Bradski, Adrian Kaehler
September 2008
Beginner to intermediate content levelBeginner to intermediate
580 pages
20h 7m
English
O'Reilly Media, Inc.
Content preview from Learning OpenCV

Histogram Equalization

Cameras and image sensors must usually deal not only with the contrast in a scene but also with the image sensors' exposure to the resulting light in that scene. In a standard camera, the shutter and lens aperture settings juggle between exposing the sensors to too much or too little light. Often the range of contrasts is too much for the sensors to deal with; hence there is a trade-off between capturing the dark areas (e.g., shadows), which requires a longer exposure time, and the bright areas, which require shorter exposure to avoid saturating "whiteouts."

Two custom distance transform masks

Figure 6-20. Two custom distance transform masks

First a Canny edge detector was run with param1=100 and param2=200; then the distance transform was run with the output scaled by a factor of 5 to increase visibility

Figure 6-21. First a Canny edge detector was run with param1=100 and param2=200; then the distance transform was run with the output scaled by a factor of 5 to increase visibility

After the picture has been taken, there's nothing we can do about what the sensor recorded; however, we can still take what's there and try to expand the dynamic range of the image. The most commonly used technique for this is histogram equalization. [88][89] In Figure 6-22 we can see that the image on the left is poor because there's not much variation of the range of values. This is evident from the histogram of its intensity values on the right. Because we are dealing with an 8-bit ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Learning OpenCV 3

Learning OpenCV 3

Adrian Kaehler, Gary Bradski
Learning OpenCV, 2nd Edition

Learning OpenCV, 2nd Edition

Adrian Kaehler, Gary Bradski
Practical OpenCV

Practical OpenCV

Samarth Brahmbhatt
Machine Learning for OpenCV

Machine Learning for OpenCV

Michael Beyeler, Michael Beyeler (USD)

Publisher Resources

ISBN: 9780596516130Supplemental ContentErrata Page