Understanding and implementing random forests

Random forests is a predictive algorithm falling under the ambit of ensemble learning algorithms. Ensemble learning algorithms consist of a combination of various independent models (similar or different) to solve a particular prediction problem. The final result is calculated based on the results from all these independent models, which is better than the results of any of the independent models.

There are two kinds of ensemble algorithm, as follows:

  • Averaging methods: Several similar independent models are created (in the case of decision trees, it can mean trees with different depths or trees involving a certain variable and not involving the others, and so on.) and the final prediction is given by ...

Get Learning Predictive Analytics with Python now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.