9.6 The recursive method
Suppose that the severity distribution fX(x) is defined on 0, 1, 2, …, m representing multiples of some convenient monetary unit. The number m represents the largest possible payment and could be infinite. Further, suppose that the frequency distribution, pk, is a member of the (a, b,1) class and therefore satisfies
Then the following result holds.
Theorem 9.8 For the (a, b, 1) class,
noting that x Λ m is notation for min(x, m).
Proof: This result is identical to Theorem 7.2 with appropriate substitution of notation and recognition that the argument of fX(x) cannot exceed m.
Corollary 9.9 For the (a, b, 0) class, the result (9.20) reduces to
Note that when the severity distribution has no probability at zero, the denominator of (9.20) and (9.21) equals 1. Further, in the case of the Poisson distribution, (9.21) reduces to
The starting value of the recursive schemes (9.20) and (9.21) is fS(0) = PN [fX(0)] following Theorem 7.3 with an appropriate change of notation. In the case of the Poisson distribution we have
Starting values for other ...
Get Loss Models: From Data to Decisions, 4th Edition now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.