Skip to Content
Machine Learning Engineering with Python
book

Machine Learning Engineering with Python

by Andrew P. McMahon
November 2021
Intermediate to advanced
276 pages
5h 59m
English
Packt Publishing
Content preview from Machine Learning Engineering with Python

Chapter 6: Scaling Up

The previous chapter was all about starting the conversation around how we get our solutions out into the world through different deployment patterns, as well as some of the tools we can use to do this. This chapter will aim to build on that conversation by discussing the concepts and tools we can use to scale up our solutions to cope with large volumes of data or traffic.

Running some simple Machine Learning (ML) models on a few thousand data points on your laptop is a good exercise, especially when you're performing the discovery and proof-of-concept steps we outlined previously at the beginning of any ML development project. This approach, however, is not appropriate if we have to run millions upon millions of data points ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning Engineering with Python - Second Edition

Machine Learning Engineering with Python - Second Edition

Andrew P. McMahon
Python Machine Learning - Third Edition

Python Machine Learning - Third Edition

Sebastian Raschka, Vahid Mirjalili
Introduction to Machine Learning with Python

Introduction to Machine Learning with Python

Andreas C. Müller, Sarah Guido

Publisher Resources

ISBN: 9781801079259Supplemental Content