Skip to Content
Machine Learning for Algorithmic Trading - Second Edition
book

Machine Learning for Algorithmic Trading - Second Edition

by Stefan Jansen
July 2020
Beginner to intermediate
820 pages
25h 30m
English
Packt Publishing
Content preview from Machine Learning for Algorithmic Trading - Second Edition

7

Linear Models – From Risk Factors to Return Forecasts

The family of linear models represents one of the most useful hypothesis classes. Many learning algorithms that are widely applied in algorithmic trading rely on linear predictors because they can be efficiently trained, are relatively robust to noisy financial data, and have strong links to the theory of finance. Linear predictors are also intuitive, easy to interpret, and often fit the data reasonably well or at least provide a good baseline.

Linear regression has been known for over 200 years, since Legendre and Gauss applied it to  astronomy and began to analyze its statistical properties. Numerous extensions have since adapted the linear regression model and the baseline ordinary least ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Machine Learning for Algorithmic Trading

Hands-On Machine Learning for Algorithmic Trading

Stefan Jansen

Publisher Resources

ISBN: 9781839217715Supplemental Content