Skip to Main Content
Machine Learning
book

Machine Learning

by Mohssen Mohammed, Muhammad Badruddin Khan, Eihab Mohammed Bashier
August 2016
Intermediate to advanced content levelIntermediate to advanced
204 pages
3h 51m
English
CRC Press
Content preview from Machine Learning

Chapter 8

Support Vector Machine

8.1 Introduction

In machine learning, support vector machines (SVMs; also, support vector networks [1]) are supervised learning models with associated learning algorithms that analyze data and recognize patterns used for classification and regression analysis. Given a set of training examples, each marked for belonging to one of two categories, an SVM training algorithm builds a model that assigns new examples into one category or the other, making it a nonprobabilistic binary linear classifier. An SVM model is a representation of the examples as points in space, mapped, so that the examples of the separate categories are divided by a clear gap that is as wide as possible. New examples are then mapped into that ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning

Machine Learning

Subramanian Chandramouli, Saikat Dutt, Amit Kumar Das
Machine Learning

Machine Learning

Sergios Theodoridis

Publisher Resources

ISBN: 9781315354415