Skip to Main Content
Meta-heuristic and Evolutionary Algorithms for Engineering Optimization
book

Meta-heuristic and Evolutionary Algorithms for Engineering Optimization

by Omid Bozorg-Haddad, Mohammad Solgi, Hugo A. Loáiciga
October 2017
Intermediate to advanced content levelIntermediate to advanced
304 pages
8h 3m
English
Wiley
Content preview from Meta-heuristic and Evolutionary Algorithms for Engineering Optimization

4 Genetic Algorithm

Summary

This chapter describes the genetic algorithm (GA), which is a well‐known evolutionary algorithm. First, a brief literature review of the GA is presented, followed by a description of the natural process that inspires the algorithm and how it is mapped to the GA. The steps of the standard GA are described in depth. A pseudocode of the GA closes this chapter.

4.1 Introduction

One of the best‐known evolutionary algorithms is the genetic algorithm (GA) developed by Holland (1975) and popularized by Goldberg (1989). There are several varieties of GAs (Brindle, 1981; Baker, 1985, 1987; Goldberg et al., 1991). The elitist version, which allows the best individual(s) from a generation to carry over to the next one, was introduced by De Jong (1975). Other versions are the modified GA (modGA) (Michalewicz, 1996), messy GAs (Goldberg et al., 1990), GAs with varying population size (GAsVaPS) (Michalewicz, 1996), genetic implementor (GENITOR) (Whitley, 1989), and breeder GAs (BGA) (Muhlenbein and Schlierkamp, 1993). Several authors have implemented the GA in water resources optimization (East and Hall, 1994; Gen and Cheng, 1997). Furuta et al. (1996) presented a decision‐making supporting system based on the GA for the aesthetic design of dams. Pillay et al. (1997) applied genetic algorithms to the problem of parameter determination of induction motors. Wardlaw and Sharif (1999) employed the GA to solve four‐ and ten‐reservoir problems. Several researchers ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Optimization for Engineering Problems

Optimization for Engineering Problems

Kaushik Kumar, J. Paulo Davim

Publisher Resources

ISBN: 9781119386995Purchase book