Skip to Content
Modern Time Series Forecasting with Python - Second Edition
book

Modern Time Series Forecasting with Python - Second Edition

by Manu Joseph, Jeffrey Tackes
October 2024
Intermediate to advanced
660 pages
18h 51m
English
Packt Publishing
Content preview from Modern Time Series Forecasting with Python - Second Edition

4

Setting a Strong Baseline Forecast

In the previous chapter, we saw some techniques we can use to understand time series data, do some Exploratory Data Analysis (EDA), and so on. But now, let’s get to the crux of the matter—time series forecasting. The point of understanding the dataset and looking at patterns, seasonality, and so on was to make the job of forecasting that series easier. And with any machine learning exercise, one of the first things we need to establish before going further is a baseline.

A baseline is a simple model that provides reasonable results without requiring a lot of time to come up with them. Many people think of a baseline as something that is derived from common sense, such as an average or some rule of thumb. ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Modern Time Series Forecasting with Python

Modern Time Series Forecasting with Python

Manu Joseph
Python Polars: The Definitive Guide

Python Polars: The Definitive Guide

Jeroen Janssens, Thijs Nieuwdorp

Publisher Resources

ISBN: 9781835883181Supplemental Content