Classifying with multiple binary classifiers
So far we have focused on binary classifiers, which classify with one of two possible labels. The same techniques for training a binary classifier can also be used to create a multi-class classifier, which is a classifier that can classify with one of the many possible labels. But there are also cases where you need to be able to classify with multiple labels. A classifier that can return more than one label is a multi-label classifier.
A common technique for creating a multi-label classifier is to combine many binary classifiers, one for each label. You train each binary classifier so that it either returns a known label or returns something else to signal that the label does not apply. Then, you ...
Get Natural Language Processing: Python and NLTK now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.