Data Cleaning and Pre-processingIntroductionAdvanced Operations on Data FramesExercise 6: Sorting the Data FrameJoin OperationsPre-Processing of Data FramesExercise 7: Centering VariablesExercise 8: Normalizing the VariablesExercise 9: Scaling the VariablesActivity 6: Centering and Scaling the VariablesExtracting the Principle ComponentsExercise 10: Extracting the Principle ComponentsSubsetting DataExercise 11: Subsetting a Data FrameData TransposesIdentifying the Input and Output VariablesIdentifying the Category of PredictionHandling Missing Values, Duplicates, and OutliersHandling Missing ValuesExercise 12: Identifying the Missing ValuesTechniques for Handling Missing ValuesExercise 13: Imputing Using the MICE PackageExercise 14: Performing Predictive Mean MatchingHandling DuplicatesExercise 15: Identifying DuplicatesTechniques Used to Handle Duplicate ValuesHandling OutliersExercise 16: Identifying Outlier ValuesTechniques Used to Handle OutliersExercise 17: Predicting Values to Handle OutliersHandling Missing DataExercise 18: Handling Missing ValuesActivity 7: Identifying OutliersPre-Processing Categorical DataHandling Imbalanced DatasetsUndersamplingExercise 19: Undersampling a DatasetOversamplingExercise 20: OversamplingROSEExercise 21: Oversampling using ROSESMOTEExercise 22: Implementing the SMOTE TechniqueActivity 8: Oversampling and Undersampling using SMOTEActivity 9: Sampling and Oversampling using ROSESummary