Logistic units
As a starting point, we use the idea of a logistic unit over the simplified model of a neuron. It consists of a set of inputs and outputs and an activation function. This activation function is essentially performing a calculation on the set of inputs, and subsequently giving an output. Here, we set the activation function to the sigmoid that we used for logistic regression in the previous chapter:
We have Two input units, x1 and x2 and a bias unit, x0, that is set to one. These are fed into a hypothesis function that uses the sigmoid logistic function and a weight vector, w, which parameterizes the hypothesis function. The feature ...
Get Python: Deeper Insights into Machine Learning now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.