3

Recognizing Faces with Support Vector Machine

In the previous chapter, we built a movie recommendation system with Naïve Bayes. This chapter continues our journey of supervised learning and classification. Specifically, we will be focusing on multiclass classification and support vector machine (SVM) classifiers. SVM is one of the most popular algorithms when it comes to high-dimensional spaces. The goal of the algorithm is to find a decision boundary in order to separate data from different classes. We will be discussing in detail how that works. Also, we will be implementing the algorithm with scikit-learn, and applying it to solve various real-life problems, including our main project of face recognition, along with fetal state categorization ...

Get Python Machine Learning By Example - Third Edition now with the O’Reilly learning platform.

O’Reilly members experience live online training, plus books, videos, and digital content from nearly 200 publishers.