2

RAG Embedding Vector Stores with Deep Lake and OpenAI

There will come a point in the execution of your project where complexity is unavoidable when implementing RAG-driven generative AI. Embeddings transform bulky structured or unstructured texts into compact, high-dimensional vectors that capture their semantic essence, enabling faster and more efficient information retrieval. However, we will inevitably be faced with a storage issue as the creation and storage of document embeddings become necessary when managing increasingly large datasets. You could ask the question at this point, why not use keywords instead of embeddings? And the answer is simple: although embeddings require more storage space, they capture the deeper semantic meanings ...

Get RAG-Driven Generative AI now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.