Chapter 1. Bayes’s Theorem
Conditional probability
The fundamental idea behind all Bayesian statistics is Bayes’s theorem, which is surprisingly easy to derive, provided that you understand conditional probability. So we’ll start with probability, then conditional probability, then Bayes’s theorem, and on to Bayesian statistics.
A probability is a number between 0 and 1 (including both) that represents a degree of belief in a fact or prediction. The value 1 represents certainty that a fact is true, or that a prediction will come true. The value 0 represents certainty that the fact is false.
Intermediate values represent degrees of certainty. The value 0.5, often written as 50%, means that a predicted outcome is as likely to happen as not. For example, the probability that a tossed coin lands face up is very close to 50%.
A conditional probability is a probability based on some background information. For example, I want to know the probability that I will have a heart attack in the next year. According to the CDC, “Every year about 785,000 Americans have a first coronary attack (http://www.cdc.gov/heartdisease/facts.htm).”
The U.S. population is about 311 million, so the probability that a randomly chosen American will have a heart attack in the next year is roughly 0.3%.
But I am not a randomly chosen American. Epidemiologists have identified many factors that affect the risk of heart attacks; depending on those factors, my risk might be higher or lower than average.
I am male, 45 years ...