Skip to Main Content
Visualizing Quaternions
book

Visualizing Quaternions

by Andrew J. Hanson
February 2006
Intermediate to advanced content levelIntermediate to advanced
600 pages
8h 57m
English
Elsevier Science
Content preview from Visualizing Quaternions

Chapter 19. Two-Dimensional Curves

Our purpose in this chapter is to introduce the idea of orientation frames in two dimensions, and in particular to study the technology of moving orientation frames. We choose two dimensions as our logical starting point because it is the simplest framework available, and there are many basic concepts that generalize to three dimensions and provide insight into quaternion methods.

Orientation Frames for 2D Space Curves

Suppose we have a 2D object (a simple box, for example), as shown in Figure 19.1. The orientation frame consists of two orthogonal vectors, denoted by the tangent T (the direction corresponding to the slope of the “hillside” the box is sitting on) and the normal N, which is the direction perpendicular ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Advanced Mathematics

Advanced Mathematics

Stanley J. Farlow
Geometry for Programmers

Geometry for Programmers

Oleksandr Kaleniuk
Geometric Algebra for Computer Science

Geometric Algebra for Computer Science

Leo Dorst, Daniel Fontijne, Stephen Mann

Publisher Resources

ISBN: 9780120884001