Prabhat on deep learning for science

The O’Reilly Bots Podcast: Solutions from big data sets.

By Jon Bruner
April 3, 2017
The Whirlpool Galaxy (Spiral Galaxy M51, NGC 5194). The Whirlpool Galaxy (Spiral Galaxy M51, NGC 5194). (source: NASA and the European Space Agency on Wikipedia Commons)

In this episode of the O’Reilly Bots Podcast, I talk about deep learning at the extremes of scale and computing power with Prabhat, who leads the data and analytics group at Lawrence Berkeley National Laboratory’s supercomputing center. If you’re working on commercial AI, it’s worth glancing across the divide at scientific AI.

Prabhat talks about his work at the the National Energy Research Scientific Computing Center (NERSC), including a project that aims to locate and quantify extreme weather events. He explains how this moves climate data analysis from a focus on core statistics—especially the change in the average mean temperature of the Earth in any given year—to analyzing the impact of extreme events.  He’s also working on the Celeste project, which uses telescope data to create a unified catalog of all objects in the visible universe.

Learn faster. Dig deeper. See farther.

Join the O'Reilly online learning platform. Get a free trial today and find answers on the fly, or master something new and useful.

Learn more

Looking ahead, Prabhat sees broad applications for deep learning in scientific research beyond climate science—especially in astronomy, cosmology, neuroscience, material science, and physics.

Links:

Post topics: AI & ML
Post tags: Bots Podcast
Share:

Get the O’Reilly Artificial Intelligence Newsletter

Get the O’Reilly Artificial Intelligence Newsletter