Appendix B:Iterative Formulas Derivation of Complex Blind Equalization Algorithm Based on BRNN

(1) Weight iterative formula of the feed-forward unit

The connection weight between the feed-forward unit and the output unit is cj(n), so

cj(n+1)=cj(n)μcJ(n)cj(n)(B.1)

J(n)cj(n)=2[ | x˜(n) |2R2 ]| x˜(n) |[ | x˜(n) |cj,R(n)+j| x˜(n) |cj,I(n) ](B.2)

According to eqs. (4.11)–(4.13), we obtain

| x˜(n) |cj,R(n)=x˜(n)x˜*(n)cj,R(n)=12| x˜(n) |[ x˜(n)x˜*(n) ]cj,R(n)=12| x˜(n) |{ f2[ vR(n) ]+f2[ vI(n) ] }cj,R(n)=1| x˜(n) |{ f[ vR(n) ]f'[ vR(n) ]vR(n)cj,R(n)+f[ vI(n) ]f'[ vI(n) ]vI(n)cj,R(n) }(B.3)

Get Blind Equalization in Neural Networks now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.