Skip to Content
Building Machine Learning Powered Applications
book

Building Machine Learning Powered Applications

by Emmanuel Ameisen
January 2020
Beginner to intermediate
257 pages
6h 48m
English
O'Reilly Media, Inc.
Book available

Overview

Learn the skills necessary to design, build, and deploy applications powered by machine learning (ML). Through the course of this hands-on book, you’ll build an example ML-driven application from initial idea to deployed product. Data scientists, software engineers, and product managers—including experienced practitioners and novices alike—will learn the tools, best practices, and challenges involved in building a real-world ML application step by step.

Author Emmanuel Ameisen, an experienced data scientist who led an AI education program, demonstrates practical ML concepts using code snippets, illustrations, screenshots, and interviews with industry leaders. Part I teaches you how to plan an ML application and measure success. Part II explains how to build a working ML model. Part III demonstrates ways to improve the model until it fulfills your original vision. Part IV covers deployment and monitoring strategies.

This book will help you:

  • Define your product goal and set up a machine learning problem
  • Build your first end-to-end pipeline quickly and acquire an initial dataset
  • Train and evaluate your ML models and address performance bottlenecks
  • Deploy and monitor your models in a production environment
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Grokking Machine Learning

Grokking Machine Learning

Luis Serrano
Machine Learning with PyTorch and Scikit-Learn

Machine Learning with PyTorch and Scikit-Learn

Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili

Publisher Resources

ISBN: 9781492045106Errata PageSupplemental Content