November 2005
Beginner to intermediate
594 pages
16h 23m
English
You want an efficient matrix implementation where the dimensions (i.e., number of rows and columns) are constants known at compile time.
When the dimensions of a matrix are known at compile time, the compiler can more easily optimize an implementation that accepts the row and columns as template parameters as shown in Example 11-30.
Example 11-30. kmatrix.hpp
#ifndef KMATRIX_HPP #define KMATRIX_HPP #include "kvector.hpp" #include "kstride_iter.hpp" template<class Value_T, int Rows_N, int Cols_N> class kmatrix { public: // public typedefs typedef Value_T value_type; typedef kmatrix self; typedef Value_T* iterator; typedef const Value_T* const_iterator; typedef kstride_iter<Value_T*, 1> row_type; typedef kstride_iter<Value_T*, Cols_N> col_type; typedef kstride_iter<const Value_T*, 1> const_row_type; typedef kstride_iter<const Value_T*, Cols_N> const_col_type; // public constants static const int nRows = Rows_N; static const int nCols = Cols_N; // constructors kmatrix() { m = Value_T(); } kmatrix(const self& x) { m = x.m; } explicit kmatrix(Value_T& x) { m = x.m; } // public functions static int rows() { return Rows_N; } static int cols() { return Cols_N; } row_type row(int n) { return row_type(begin() + (n * Cols_N)); } col_type col(int n) { return col_type(begin() + n); } const_row_type row(int n) const { return const_row_type(begin() + (n * Cols_N)); } const_col_type col(int n) const { return const_col_type(begin() + n); ...