November 2005
Beginner to intermediate
594 pages
16h 23m
English
You want to perform efficient multiplication of two matricies.
Example 11-32 shows an
implementation of matrix multiplication that can be used with both the dynamic- or
fixed-size matrix implementations. This algorithm technically produces the result of the
equation A=A+B*C, which is, perhaps surprisingly, an
equation more efficiently computed than A=B*C.
Example 11-32. Matrix multiplication
#include "matrix.hpp" // recipe 11.13
#include "kmatrix.hpp" // recipe 11.14
#include <iostream>
#include <cassert>
using namespace std;
template<class M1, class M2, class M3>
void matrixMultiply(const M1& m1, const M2& m2, M3& m3)
{
assert(m1.cols() == m2.rows());
assert(m1.rows() == m3.rows());
assert(m2.cols() == m3.cols());
for (int i=m1.rows()-1; i >= 0; --i) {
for (int j=m2.cols()-1; j >= 0; --j) {
for (int k = m1.cols()-1; k >= 0; --k) {
m3[i][j] += m1[i][k] * m2[k][j];
}
}
}
}
int main()
{
matrix<int> m1(2, 1);
matrix<int> m2(1, 2);
kmatrix<int, 2, 2> m3;
m3 = 0;
m1[0][0] = 1; m1[1][0] = 2;
m2[0][0] = 3; m2[0][1] = 4;
matrixMultiply(m1, m2, m3);
cout << "(" << m3[0][0] << ", " << m3[0][1] << ")" << endl;
cout << "(" << m3[1][0] << ", " << m3[1][1] << ")" << endl;
}Example 11-32 produces the following output:
(3, 4) (6, 8)
When multiplying two matricies, the number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix has the number of rows of the first matrix and the number of columns ...