13

Denoising chaotic time series using an evolutionary state estimation approach

Diogo C. Soriano, Murilo B. Loiola, and Ricardo Suyama

Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS) Universidade Federal do ABC (UFABC)

Eisencraft Marcio

Escola Politécnica, Universidade de São Paulo

Vanessa B. Olivatto, João Marcos T. Romano, and Romis Attux

School of Electrical and Computer Engineering (FEEC) University of Campinas (UNICAMP)

CONTENTS

13.1  Introduction

13.2  The state estimation problem

13.2.1  Benchmark I: the extended Kalman filter

13.2.2  Benchmark II: the Wiener filtering

13.3  Denoising of chaotic time series using an evolutionary approach

13.3.1  Optimization by artificial immune system

13.4  Simulation results I ...

Get Chaotic Signals in Digital Communications now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.