Skip to Content
Deep Reinforcement Learning with Python - Second Edition
book

Deep Reinforcement Learning with Python - Second Edition

by Sudharsan Ravichandiran
September 2020
Intermediate to advanced content levelIntermediate to advanced
760 pages
18h 26m
English
Packt Publishing
Content preview from Deep Reinforcement Learning with Python - Second Edition

9

Deep Q Network and Its Variants

In this chapter, let's get started with one of the most popular Deep Reinforcement Learning (DRL) algorithms called Deep Q Network (DQN). Understanding DQN is very important as many of the state-of-the-art DRL algorithms are based on DQN. The DQN algorithm was first proposed by researchers at Google's DeepMind in 2013 in the paper Playing Atari with Deep Reinforcement Learning. They described the DQN architecture and explained why it was so effective at playing Atari games with human-level accuracy. We begin the chapter by learning what exactly a deep Q network is, and how it is used in reinforcement learning. Next, we will deep dive into the algorithm of DQN. Then we will learn how to implement DQN to play Atari ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with Python, Second Edition

Deep Learning with Python, Second Edition

Francois Chollet
Robust Python

Robust Python

Patrick Viafore

Publisher Resources

ISBN: 9781839210686Supplemental Content