Chapter 1 – Fundamentals of Reinforcement LearningChapter 2 – A Guide to the Gym ToolkitChapter 3 – The Bellman Equation and Dynamic ProgrammingChapter 4 – Monte Carlo MethodsChapter 5 – Understanding Temporal Difference LearningChapter 6 – Case Study – The MAB ProblemChapter 7 – Deep Learning FoundationsChapter 8 – A Primer on TensorFlowChapter 9 – Deep Q Network and Its VariantsChapter 10 – Policy Gradient MethodChapter 11 – Actor-Critic Methods – A2C and A3CChapter 12 – Learning DDPG, TD3, and SACChapter 13 – TRPO, PPO, and ACKTR MethodsChapter 14 – Distributional Reinforcement LearningChapter 15 – Imitation Learning and Inverse RLChapter 16 – Deep Reinforcement Learning with Stable BaselinesChapter 17 – Reinforcement Learning Frontiers