Chapter 9. Distributed Primitives
Data primitives are rather straightforward when dealing with a single-threaded program. Want to make a lock? Just use a boolean. Want a key/value store? A Map
instance is your friend. Want to keep an ordered list of data? Reach for an array. When only a single thread reads and writes to an array, itâs as simple as calling Array#push()
and Array#pop()
. In this situation, the array instance is the complete source of truth. There are no other copies that can get out of sync, no messages in transit that can be received out of order. Persisting the data to disk is as easy as calling JSON.stringify()
and fs.writeFileSync()
.
Unfortunately, the performance impact of such an approach is huge, and scaling to a sizeable userbase is nearly impossible. Not to mention such a system has a single point of failure! Instead, as youâve seen throughout this book, the answer to performance and avoiding a single point of failure depends on redundant distributed processes. Care must be put into the storage and manipulation of data, particularly when it comes to distributed systems.
Not every problem can be solved using the same data store. Depending on the data requirementsâsuch as entity relationships, the amount of data, and requirements with consistency, durability, and latencyâdifferent solutions must be chosen. Itâs not uncommon for an application composed of distributed services to require several data storage tools. Sometimes you need a graph database ...
Get Distributed Systems with Node.js now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.