Skip to Content
Fundamentals of Deep Learning, 2nd Edition
book

Fundamentals of Deep Learning, 2nd Edition

by Nithin Buduma, Nikhil Buduma, Joe Papa
May 2022
Intermediate to advanced content levelIntermediate to advanced
387 pages
11h 47m
English
O'Reilly Media, Inc.
Content preview from Fundamentals of Deep Learning, 2nd Edition

Chapter 4. Training Feed-Forward Neural Networks

The Fast-Food Problem

We’re beginning to understand how we can tackle some interesting problems using deep learning, but one big question still remains: how exactly do we figure out what the parameter vectors (the weights for all of the connections in our neural network) should be? This is accomplished by a process commonly referred to as training (see Figure 4-1). During training, we show the neural net a large number of training examples and iteratively modify the weights to minimize the errors we make on the training examples. After enough examples, we expect that our neural network will be quite effective at solving the task it’s been trained to do.

Figure 4-1. This is the neuron we want to train for the fast-food problem

Let’s continue with an example from Chapter 3 involving a linear neuron: every single day, we purchase a restaurant meal consisting of burgers, fries, and sodas. We buy some number of servings for each item. We want to be able to predict how much a meal is going to cost us, but the items don’t have price tags. The only thing the cashier will tell us is the total price of the meal. We want to train a single linear neuron to solve this problem. How do we do it?

One idea is to be intelligent about picking our training cases. For one meal we could buy only a single serving of burgers, for another we could buy ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Generative Deep Learning, 2nd Edition

Generative Deep Learning, 2nd Edition

David Foster
Math for Deep Learning

Math for Deep Learning

Ronald T. Kneusel
Grokking Deep Learning

Grokking Deep Learning

Andrew W. Trask

Publisher Resources

ISBN: 9781492082170Errata PageSupplemental Content