In this section, we will see how an ANN learns where neurons are stacked up in layers. The number of layers in a network is equal to the number of hidden layers plus the number of output layers. We don't take the input layer into account when calculating the number of layers in a network. Consider a two-layer neural network with one input layer, , one hidden layer, , and one output layer, , as shown in the following diagram: ...
Forward propagation in ANN
Get Hands-On Deep Learning Algorithms with Python now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.