Skip to Content
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition
book

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition

by Aurélien Géron
September 2019
Intermediate to advanced
848 pages
24h 18m
English
O'Reilly Media, Inc.
Content preview from Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition

Chapter 8. Dimensionality Reduction

Many Machine Learning problems involve thousands or even millions of features for each training instance. Not only do all these features make training extremely slow, but they can also make it much harder to find a good solution, as we will see. This problem is often referred to as the curse of dimensionality.

Fortunately, in real-world problems, it is often possible to reduce the number of features considerably, turning an intractable problem into a tractable one. For example, consider the MNIST images (introduced in Chapter 3): the pixels on the image borders are almost always white, so you could completely drop these pixels from the training set without losing much information. Figure 7-6 confirms that these pixels are utterly unimportant for the classification task. Additionally, two neighboring pixels are often highly correlated: if you merge them into a single pixel (e.g., by taking the mean of the two pixel intensities), you will not lose much information.

Warning

Reducing dimensionality does cause some information loss (just like compressing an image to JPEG can degrade its quality), so even though it will speed up training, it may make your system perform slightly worse. It also makes your pipelines a bit more complex and thus harder to maintain. So, if training is too slow, you should first try to train your system with the original data before considering using dimensionality reduction. In some cases, reducing the dimensionality of ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition

Aurélien Géron
Machine Learning with PyTorch and Scikit-Learn

Machine Learning with PyTorch and Scikit-Learn

Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili

Publisher Resources

ISBN: 9781492032632Errata Page