Preface
As parallel data analysis has grown common, practitioners in many fields have sought easier tools for this task. Apache Spark has quickly emerged as one of the most popular, extending and generalizing MapReduce. Spark offers three main benefits. First, it is easy to use—you can develop applications on your laptop, using a high-level API that lets you focus on the content of your computation. Second, Spark is fast, enabling interactive use and complex algorithms. And third, Spark is a general engine, letting you combine multiple types of computations (e.g., SQL queries, text processing, and machine learning) that might previously have required different engines. These features make Spark an excellent starting point to learn about Big Data in general.
This introductory book is meant to get you up and running with Spark quickly. You’ll learn how to download and run Spark on your laptop and use it interactively to learn the API. Once there, we’ll cover the details of available operations and distributed execution. Finally, you’ll get a tour of the higher-level libraries built into Spark, including libraries for machine learning, stream processing, and SQL. We hope that this book gives you the tools to quickly tackle data analysis problems, whether you do so on one machine or hundreds.
Audience
This book targets data scientists and engineers. We chose these two groups because they have the most to gain from using Spark to expand the scope of problems they can solve. Spark’s ...