Skip to Content
Machine Learning Logistics
book

Machine Learning Logistics

by Ted Dunning, Ellen Friedman
October 2017
Intermediate to advanced content levelIntermediate to advanced
88 pages
2h
English
O'Reilly Media, Inc.
Content preview from Machine Learning Logistics

Chapter 4. Managing Model Development

Model development is the aspect that is most unchanged by the introduction of rendezvous systems, containers, and a DataOps-style of development, but the rendezvous style does bring some important changes.

One of the biggest differences is that in a DataOps team, model development goes on cheek-by-jowl with software development, and operations with much less separation between data scientists and others. What that means is that data scientists must take on some tasks relative to packaging and testing models that are a bit different from what they may be used to. The good news is that doing this makes deployment and management of the model smoother, so the data scientists are distracted less often by deployment problems.

Investing in Improvements

Over time, systems that use machine learning heavily can build up large quantities of hidden technical debt. This debt takes many forms, including data coupling between models, dead features, redundant inputs, hidden dependencies, and more. Most important, this debt is different from the sort of technical debt you find in normal software, so the software and ops specialists in a DataOps team won’t necessarily see it and data scientists, who are typically used to working in a cloistered and sterilized environment won’t recognize it either because it is an emergent feature of real-world deployments.

A variety of straightforward things can help with this debt. For instance, you should schedule regular ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Machine Learning Pocket Reference

Machine Learning Pocket Reference

Matt Harrison
Machine Learning for the Web

Machine Learning for the Web

Steve Essinger, Andrea Isoni
IBM Information Server: Integration and Governance for Emerging Data Warehouse Demands

IBM Information Server: Integration and Governance for Emerging Data Warehouse Demands

Chuck Ballard, Manish Bhide, Holger Kache, Bob Kitzberger, Beate Porst, Yeh-Heng Sheng, Harald C. Smith

Publisher Resources

ISBN: 9781491997628