Chapter 2: Getting Started with MLflow for Deep Learning

One of the key capabilities of MLflow is to enable Machine Learning (ML) experiment management. This is critical because data science requires reproducibility and traceability so that a Deep Learning (DL) model can be easily reproduced with the same data, code, and execution environment. This chapter will help us get started with how to implement DL experiment management quickly. We will learn about MLflow experiment management concepts and capabilities, set up an MLflow development environment, and complete our first DL experiment using MLflow. By the end of this chapter, we will have a working MLflow tracking server showing our first DL experiment results.

In this chapter, we're going ...

Get Practical Deep Learning at Scale with MLflow now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.