Skip to Content
Practical Machine Learning for Computer Vision
book

Practical Machine Learning for Computer Vision

by Valliappa Lakshmanan, Martin Görner, Ryan Gillard
July 2021
Intermediate to advanced
480 pages
12h 44m
English
O'Reilly Media, Inc.
Book available

Overview

This practical book shows you how to employ machine learning models to extract information from images. ML engineers and data scientists will learn how to solve a variety of image problems including classification, object detection, autoencoders, image generation, counting, and captioning with proven ML techniques. This book provides a great introduction to end-to-end deep learning: dataset creation, data preprocessing, model design, model training, evaluation, deployment, and interpretability.

Google engineers Valliappa Lakshmanan, Martin Görner, and Ryan Gillard show you how to develop accurate and explainable computer vision ML models and put them into large-scale production using robust ML architecture in a flexible and maintainable way. You'll learn how to design, train, evaluate, and predict with models written in TensorFlow or Keras.

You'll learn how to:

  • Design ML architecture for computer vision tasks
  • Select a model (such as ResNet, SqueezeNet, or EfficientNet) appropriate to your task
  • Create an end-to-end ML pipeline to train, evaluate, deploy, and explain your model
  • Preprocess images for data augmentation and to support learnability
  • Incorporate explainability and responsible AI best practices
  • Deploy image models as web services or on edge devices
  • Monitor and manage ML models
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning for Computer Vision

Deep Learning for Computer Vision

Rajalingappaa Shanmugamani
PyTorch for Deep Learning and Computer Vision

PyTorch for Deep Learning and Computer Vision

Rayan Slim, Jad Slim, Amer Abdulkader, Sarmad Tanveer
Kubeflow for Machine Learning

Kubeflow for Machine Learning

Trevor Grant, Holden Karau, Boris Lublinsky, Richard Liu, Ilan Filonenko

Publisher Resources

ISBN: 9781098102357Errata PageSupplemental Content