Generative Adversarial Networks 101

As shown in the following diagram, the Generative Adversarial Networks, popularly known as GANs, have two models working in sync to learn and train on complex data such as images, videos or audio files:

Intuitively, the generator model generates data starting from random noise but slowly learns how to generate more realistic data. The generator output and the real data is fed into the discriminator that learns how to differentiate fake data from real data.

Thus, both generator and discriminator play an adversarial game where the generator tries to fool the discriminator by generating as real data as possible, ...

Get Python: Advanced Guide to Artificial Intelligence now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.