13

Case Study: Predicting Crop Yields

In our final case study, we will explore the real-world problem of crop yields. To do this, we will demonstrate an Extract, Transform, Load (ETL) workflow that uses many of the Python methods explained in previous chapters – ArcPy, ArcGIS API for Python, Pandas, and scikit-learn – as well as some of the web tools that Python allows you to use. The ETL process combines worldwide agricultural data into a format that can be used to predict crop yields using machine learning and loads it into ArcGIS Online. The resulting combined dataset is geographically enabled and can be updated with the latest data at any time using code.

To top it all off, we will display the final combined data in a simple web app built ...

Get Python for ArcGIS Pro now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.