Appendix B. Call Option Class

Example B-1 contains a class definition for a European call option in the Black-Scholes-Merton (1973) model (cf. Chapter 3, and in particular Example 3-1).

Example B-1. Implementation of a Black-Scholes-Merton call option class
#
# Valuation of European call options in Black-Scholes-Merton Model
# incl. Vega function and implied volatility estimation
# -- class-based implementation
# bsm_option_class.py
#

from math import log, sqrt, exp
from scipy import stats

class call_option(object):
    ''' Class for European call options in BSM model.

    Attributes
    ==========
    S0 : float
        initial stock/index level
    K : float
        strike price
    T : float
        maturity (in year fractions)
    r : float
        constant risk-free short rate
    sigma : float
        volatility factor in diffusion term

    Methods
    =======
    value : float
        return present value of call option
    vega : float
        return Vega of call option
    imp_vol: float
        return implied volatility given option quote
    '''

    def __init__(self, S0, K, T, r, sigma):
        self.S0 = float(S0)
        self.K = K
        self.T = T
        self.r = r
        self.sigma = sigma

    def value(self):
        ''' Returns option value. '''
        d1 = ((log(self.S0 / self.K)
            + (self.r + 0.5 * self.sigma ** 2) * self.T)
            / (self.sigma * sqrt(self.T)))
        d2 = ((log(self.S0 / self.K)
            + (self.r - 0.5 * self.sigma ** 2) * self.T)
            / (self.sigma * sqrt(self.T)))
        value = (self.S0 * stats.norm.cdf(d1, 0.0, 1.0)
            - self.K * exp(-self.r * self.T) * stats.norm.cdf(d2, 0.0, 1.0))
        return value

    def vega(self):
        ''' Returns Vega of ...

Get Python for Finance now with the O’Reilly learning platform.

O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.