Extracting features from text
Many machine learning problems use text as an explanatory variable. Text must be transformed to a different representation that encodes as much of its meaning as possible in a feature vector. In the following sections we will review variations of the most common representation of text that is used in machine learning: the bag-of-words model.
The bag-of-words representation
The most common representation of text is the bag-of-words model. This representation uses a multiset, or bag, that encodes the words that appear in a text; the bag-of-words does not encode any of the text's syntax, ignores the order of words, and disregards all grammar. Bag-of-words can be thought of as an extension to one-hot encoding. It creates ...
Get scikit-learn : Machine Learning Simplified now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.