Binary classification performance metrics
A variety of metrics exist to evaluate the performance of binary classifiers against trusted labels. The most common metrics are accuracy, precision, recall, F1 measure, and ROC AUC score. All of these measures depend on the concepts of true positives, true negatives, false positives, and false negatives. Positive and negative refer to the classes. True and false denote whether the predicted class is the same as the true class.
For our SMS spam classifier, a true positive prediction is when the classifier correctly predicts that a message is spam. A true negative prediction is when the classifier correctly predicts that a message is ham. A prediction that a ham message is spam is a false positive prediction, ...
Get scikit-learn : Machine Learning Simplified now with the O’Reilly learning platform.
O’Reilly members experience books, live events, courses curated by job role, and more from O’Reilly and nearly 200 top publishers.