July 2017
Beginner to intermediate
418 pages
9h 46m
English
In this chapter, we learned about recommendation engines. We saw the two types of recommendation engines, that is, content recommenders and collaborative filtering recommenders. We learned how content recommenders can be built on zero to no historical data and are based on the attributes present on the item itself, using which, we figure out the similarity with other items and recommend them. Later, we worked on a collaborative filtering example using the same MovieLens dataset and the Apache Spark alternating least square recommender. We learned that collaborative filtering is based on historical data of users' activity, based on which other similar users are figured out and the products they liked are recommended to the other users. ...