Skip to Content
Deep Learning with PyTorch
book

Deep Learning with PyTorch

by Eli Stevens, Thomas Viehmann, Luca Pietro Giovanni Antiga
July 2020
Intermediate to advanced
520 pages
15h 29m
English
Manning Publications
Content preview from Deep Learning with PyTorch

Part 2. Learning from images in the real world: Early detection of lung cancer

Part 2 is structured differently than part 1; it’s almost a book within a book. We’ll take a single use case and explore it in depth over the course of several chapters, starting with the basic building blocks we learned in part 1, and building out a more complete project than we’ve seen so far. Our first attempts are going to be incomplete and inaccurate, and we’ll explore how to diagnose those problems and then fix them. We’ll also identify various other improvements to our solution, implement them, and measure their impact. In order to train the models we’ll develop in part 2, you will need access to a GPU with at least 8 GB of RAM as well as several hundred gigabytes ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with PyTorch

Deep Learning with PyTorch

Vishnu Subramanian
Grokking Deep Learning

Grokking Deep Learning

Andrew W. Trask

Publisher Resources

ISBN: 9781617295263Supplemental ContentPublisher SupportOtherPublisher WebsiteSupplemental ContentErrata PagePurchase Link