Skip to Content
Essential PySpark for Scalable Data Analytics
book

Essential PySpark for Scalable Data Analytics

by Sreeram Nudurupati
October 2021
Beginner to intermediate
322 pages
7h 27m
English
Packt Publishing
Content preview from Essential PySpark for Scalable Data Analytics

Chapter 10: Scaling Out Single-Node Machine Learning Using PySpark

In Chapter 5, Scalable Machine Learning with PySpark, you learned how you could use the power of Apache Spark's distributed computing framework to train and score machine learning (ML) models at scale. Spark's native ML library provides good coverage of standard tasks that data scientists typically perform; however, there is a wide variety of functionality provided by standard single-node Python libraries that were not designed to work in a distributed manner. This chapter deals with techniques for horizontally scaling out standard Python data processing and ML libraries such as pandas, scikit-learn, XGBoost, and more. It also covers scaling out of typical data science tasks ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Data Analytics with Hadoop

Data Analytics with Hadoop

Benjamin Bengfort, Jenny Kim
Data Science on AWS

Data Science on AWS

Chris Fregly, Antje Barth

Publisher Resources

ISBN: 9781800568877Supplemental Content