Skip to Content
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition
book

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition

by Aurélien Géron
October 2022
Intermediate to advanced content levelIntermediate to advanced
864 pages
25h 31m
English
O'Reilly Media, Inc.
Book available
Content preview from Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition

Chapter 5. Support Vector Machines

A support vector machine (SVM) is a powerful and versatile machine learning model, capable of performing linear or nonlinear classification, regression, and even novelty detection. SVMs shine with small to medium-sized nonlinear datasets (i.e., hundreds to thousands of instances), especially for classification tasks. However, they don’t scale very well to very large datasets, as you will see.

This chapter will explain the core concepts of SVMs, how to use them, and how they work. Let’s jump right in!

Linear SVM Classification

The fundamental idea behind SVMs is best explained with some visuals. Figure 5-1 shows part of the iris dataset that was introduced at the end of Chapter 4. The two classes can clearly be separated easily with a straight line (they are linearly separable). The left plot shows the decision boundaries of three possible linear classifiers. The model whose decision boundary is represented by the dashed line is so bad that it does not even separate the classes properly. The other two models work perfectly on this training set, but their decision boundaries come so close to the instances that these models will probably not perform as well on new instances. In contrast, the solid line in the plot on the right represents the decision boundary of an SVM classifier; this line not only separates the two classes but also stays as far away from the closest training instances as possible. You can think of an SVM classifier as fitting ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition

Aurélien Géron
Machine Learning with PyTorch and Scikit-Learn

Machine Learning with PyTorch and Scikit-Learn

Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili

Publisher Resources

ISBN: 9781098125967Errata PageSupplemental Content