Skip to Content
Hands-On Machine Learning with Scikit-Learn and TensorFlow
book

Hands-On Machine Learning with Scikit-Learn and TensorFlow

by Aurélien Géron
March 2017
Intermediate to advanced
572 pages
15h 56m
English
O'Reilly Media, Inc.
Content preview from Hands-On Machine Learning with Scikit-Learn and TensorFlow

Chapter 14. Recurrent Neural Networks

The batter hits the ball. You immediately start running, anticipating the ball’s trajectory. You track it and adapt your movements, and finally catch it (under a thunder of applause). Predicting the future is what you do all the time, whether you are finishing a friend’s sentence or anticipating the smell of coffee at breakfast. In this chapter, we are going to discuss recurrent neural networks (RNN), a class of nets that can predict the future (well, up to a point, of course). They can analyze time series data such as stock prices, and tell you when to buy or sell. In autonomous driving systems, they can anticipate car trajectories and help avoid accidents. More generally, they can work on sequences of arbitrary lengths, rather than on fixed-sized inputs like all the nets we have discussed so far. For example, they can take sentences, documents, or audio samples as input, making them extremely useful for natural language processing (NLP) systems such as automatic translation, speech-to-text, or sentiment analysis (e.g., reading movie reviews and extracting the rater’s feeling about the movie).

Moreover, RNNs’ ability to anticipate also makes them capable of surprising creativity. You can ask them to predict which are the most likely next notes in a melody, then randomly pick one of these notes and play it. Then ask the net for the next most likely notes, play it, and repeat the process again and again. Before you know it, your net will compose ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with TensorFlow, Keras, and PyTorch

Deep Learning with TensorFlow, Keras, and PyTorch

Jon Krohn
Introduction to Machine Learning with Python

Introduction to Machine Learning with Python

Andreas C. Müller, Sarah Guido
Machine Learning with PyTorch and Scikit-Learn

Machine Learning with PyTorch and Scikit-Learn

Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili

Publisher Resources

ISBN: 9781491962282Errata PageSupplemental Content