Skip to Content
Hands-On Meta Learning with Python
book

Hands-On Meta Learning with Python

by Sudharsan Ravichandiran
December 2018
Beginner to intermediate
226 pages
7h 59m
English
Packt Publishing
Content preview from Hands-On Meta Learning with Python

Meta-SGD

Now, we define a class called MetaSGD where we implement the Meta-SGD algorithm. In the __init__ method, we'll initialize all the necessary variables. Then, we define our sigmoid activation function. After this, we define our train function:

class MetaSGD(object):

We define the __init__ method and initialize all necessary variables:

    def __init__(self):                #initialize number of tasks i.e number of tasks we need in each batch of tasks        self.num_tasks = 2                #number of samples i.e number of shots -number of data points (k) we need to have in each task        self.num_samples = 10        #number of epochs i.e training iterations        self.epochs = 10000                #hyperparameter for the outer loop (outer gradient update) i.e meta optimization        self.beta = 0.0001         #randomly ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On One-shot Learning with Python

Hands-On One-shot Learning with Python

Shruti Jadon, Ankush Garg
Hands-On Transfer Learning with Python

Hands-On Transfer Learning with Python

Dipanjan Sarkar, Raghav Bali, Tamoghna Ghosh
Python Deep Learning Projects

Python Deep Learning Projects

Matthew Lamons, Rahul Kumar, Abhishek Nagaraja
Advanced Deep Learning with Keras

Advanced Deep Learning with Keras

Rowel Atienza, Neeraj Verma, Valerio Maggio

Publisher Resources

ISBN: 9781789534207Supplemental Content